

ETA-Danmark A/S
Göteborg Plads 1
DK-2150 Nordhavn
Tel. +45 72 24 59 00
Internet www.etadanmark.dk

Authorised and notified according
to Article 29 of the Regulation (EU)
No 305/2011 of the European
Parliament and of the Council of 9
March 2011

MEMBER OF EOTA

European Technical Assessment ETA-07/0053 of 2025/12/19

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Simpson Strong-Tie Cantilever brackets
See type numbers in section II.1 of the ETA

Product family to which the above construction product belongs:

Three-dimensional nailing plate (Joist hanger for wood to wood connections and wood to concrete or steel connections)

Manufacturer:

SIMPSON STRONG-TIE Int. Ltd
For local branch refer to www.strongtie.eu

Manufacturing plant:

SIMPSON STRONG-TIE Manufacturing facilities

This European Technical Assessment contains:

29 pages including 4 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 130186-00-0603, Three Dimensional Nailing Plates

This version replaces:

The ETA with the same number issued on 2018/04/26

II	SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT	4
1	Technical description of the product	4
2	Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)	4
3	Performance of the product and references to the methods used for its assessment	6
4	Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base	9
5	Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD	9
ANNEX A REVISION HISTORY		10
ANNEX B TYPICAL INSTALLATIONS		11
B1	Cantilver bracket	11
B2	Installation	12
ANNEX C BASIS OF DESIGN		13
C0	Symbols used in the ETA-07/0053	13
C1	Definition of Force Directions	13
C2	Characteristic Capacity Modification Methods	14
C3	Fastener Specification and Capacities	14
C4.3	Load combination	14
ANNEX D PRODUCT DEFINITION AND CAPACITIES		15
D1	GERB	15
D2	GERC	18
D3	GERW	20
D4	GERG	23
D5	SC	25
D6	SCR	27
D7	LEA	29

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of the product

This ETA covers the following cantilever brackets types: GERB, GERC, GERW, GERG, SC, SCR and LEA.

Simpson Strong-Tie Cantilever Bracket GERB, GERC, GERW, GERG, SC, SCR and LEA are one-piece or two-pieces non-welded, cantilever brackets to be used in timber to timber connections.

The materials for beams can be of solid timber, glued laminated timber or engineered timber products such as LVL or I-joist (fitted with backer blocks if used for the header).

The cantilever brackets are made from pre-galvanized steel Grade S250GD + Z (min Z275) according to EN 101346 or pre-galvanized steel with a minimum characteristic 0.2% yield stress of 250MPa, a minimum ultimate tensile strength of 330MPa and a minimum Elongation of 19%, with tolerances according to EN 10143 except if another material is specified (named “Steel ref 1” in the rest of the document). Material, dimensions and nails positions are detailed in Annex D and typical installations are detailed in Annex B. By default all the products are made out of this material except when specified.

All cantilever brackets can also be produced from stainless steel number 1.4401, 1.4404, 1.4521, 1.4301 or 1.4509 according to EN 10088-2 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 MPa, a minimum 1.0% yield stress of 270 MPa and a minimum ultimate tensile strength of 530 MPa (named “Steel ref 2” in the rest of the document). If no name is clearly specified, product variant made with stainless steel have generally the same name with a S (as Stainless) at the end.

Cantilever brackets which are hot dipped galvanized according to EN ISO 1461:1999 with a zinc coating thickness of approximately 55 µm (named “Steel ref 3” in the rest of the document) are intended for use in service class 1,2 and 3 according to EN 1995 (Eurocode 5).

In the rest of this document, the steel types will be named as:

Steel ref. 1: S250GD + Z275 acc. to EN10326

Steel ref. 2: Stainless Steel 1.4401, 1.4404, 1.4521

Steel ref. 3: Stainless Steel 1.4301, 1.4509

Steel ref. 4: Stainless Steel 1.4259

Steel ref. 5: S250 + ZM310 according to EN10346:2015

Steel ref. 6: S235JR + hot dip galvanized acc. to EN ISO 1461

Steel ref. 7: S250GD + Z800 acc. to EN10326

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The cantilever brackets are intended for use in making end-grain to end-grain connections between wood based beams (joists or purlins) in a cantilever system, where requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 of Council Directive (EU) 305/2011 shall be fulfilled.

The static and kinematic behavior of the timber members and the supports shall be as described in Annex C and D.

The cantilever brackets can be installed as connections between wood based members such as:

- Structural solid timber classified to C14-C40 according to EN 338 / EN 14081,
- Glulam classified to GL24-GL36 according to EN 1194 / EN 14080,
- LVL according to EN 14374,
- Parallam PSL,
- Intrallam LSL,
- Duo- and Triobalken,
- Layered wood plates,
- Kreuzbalken with minimum thickness of 80 mm
- I-beams with backer blocks on both sides of the web in the header and web stiffeners in the joist
- Plywood according to EN 636
- Cross Laminated timber according to EN 16351

However, the calculation methods are only allowed for a characteristic wood density of up to 460 kg/m³. Even though the wood based material may have a larger density, this must not be used in the formulas for the load-carrying capacities of the fasteners.

When used on CLT, the edge distance and spacing of each fastener (CNA or CSA) must be checked according to the specifications given by the manufacturer of the timber. If nothing is specified, edge distance and spacing must be in accordance to the outer layer of the CLT panels.

Annex C defines the directions of forces and also states

the formulas for the characteristic load-carrying capacities of the joist hanger connections. The design of the connections shall be in accordance with Eurocode 5 or a similar national Timber Code.

The cantilever brackets are intended for use for connections subject to static or quasi static loading.

The scope of the cantilever brackets regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions and in conjunction with the admissible service conditions according to EN 1995-1-1 and the admissible corrosivity category as described and defined in EN ISO 12944-2

Assumed working life

The assumed intended working life of the brackets for the intended use is 50 years, provided that they are subject to appropriate use and maintenance.

The information on the working life should not be regarded as a guarantee provided by the manufacturer or ETA Danmark. An “assumed intended working life” means that it is expected that, when this working life has elapsed, the real working life may be, in normal use conditions, considerably longer without major degradation affecting the essential requirements.

3 Performance of the product and references to the methods used for its assessment

Characteristic	Assessment of characteristic
3.1 Mechanical resistance and stability*) (BWR1)	
Joint Strength - Characteristic load-carrying capacity	See Annex D
Joint Stiffness	No performance assessed
Joint ductility	No performance assessed
Resistance to seismic actions	No performance assessed
Resistance to corrosion and deterioration	See section 3.5
3.2 Safety in case of fire (BWR2)	
Reaction to fire	The brackets are made from steel classified as Euroclass A1 in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364
Resistance to fire	No performance assessed

*) See additional information in section 3.3 – 3.6.

3.3 Methods of verification

Safety principles and partial factors

The characteristic load-carrying capacities are based on the characteristic values of the nail connections and the cantilever brackets. To obtain design values the capacities have to be divided by different partial factors for the material properties, the nail connection in addition multiplied with the coefficient k_{mod} .

According to EN 1990 (Eurocode – Basis of design) paragraph 6.3.5 the design value of load-carrying capacity may be determined by reducing the characteristic values of the load-carrying capacity with different partial factors.

Thus, the characteristic values of the load-carrying capacity are determined also for timber failure $F_{Rk,H}$ (obtaining the embedment strength of nails subjected to shear or the withdrawal capacity of the most loaded nail, respectively) as well as for steel plate failure $F_{Rk,S}$. The design value of the load-carrying capacity is the smaller value of both load-carrying capacities.

$$F_{Rd} = \min \left\{ \frac{k_{\text{mod}} \cdot F_{Rk,H}}{\gamma_{M,H}}, \frac{F_{Rk,S}}{\gamma_{M,S}} \right\}$$

Therefore, for timber failure the load duration class and the service class are included. The different partial factors γ_M for steel or timber, respectively, are also correctly taken into account.

3.4 Mechanical resistance and stability

See Annex C for characteristic load-carrying capacities of the joist hangers.

The characteristic capacities of the cantilever brackets are determined by calculation assisted by testing or only testing as described in the EAD 130186-00-0603 clause 2.2.1. They should be used for designs in accordance with Eurocode 5 or a similar national Timber Code.

The design models allow the use of fasteners described in the table in Annex C3:

The characteristic load-carrying capacities of the products shall be calculated in accordance with the manufacturer's design code, extracts of which are given in Annex C4. The design code has been derived in accordance with EAD 130186-00-0603 and Eurocode 5. The calculated values should be used for designs in accordance with Eurocode 5 or a similar national Timber Code. These values are based on the assumption that there is a maximum gap of 3 mm between the timber members, the members are laterally restrained and wane is not present in the timber at the joint.

The cantilever brackets shall be used with the fasteners specified in Annex C3.

Fasteners

The load bearing capacities of the brackets have been determined based on the use of Connector nails CNA or connector screws CSA in accordance with ETA-04/0013. It is allowed to use other connector nails or connector screws in accordance with the standard EN 14592 with the same or better performance than the used 4,0 mm CNA Connector nails and still achieve the same load-bearing capacity of the connection.

If no calculations are made a reduction factor equal to the ratio between the characteristic withdrawal capacity of the actual used threaded nail and the characteristic withdrawal capacity of the corresponding Connector nail according to ETA-04/0013 is applicable for all load bearing capacities of the connection.

No performance has been determined in relation to the joint's stiffness properties - to be used for the analysis of the serviceability limit state.

No performance has been determined in relation to ductility of a joint under cyclic testing. The contribution to the performance of structures in seismic zones, therefore, has not been assessed.

3.5 Aspects related to the performance of the product

Corrosion protection in service class 1 and 2.

In accordance with EAD 130186-00-0603 the cantilever brackets have a zinc coating weight of min Z275 (steel ref. 1 and 7). The steel employed is S250 GD with min Z275 according to EN 10346.

Corrosion protection in service class 3.

In accordance with EAD 130186-00-0603 the cantilever brackets are made from stainless steel (steel ref. 2 to 4) number 1.4401, 1.4404, 1.4521, 1.4301 or 1.4509 according to EN 10088-2 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 MPa, a minimum 1.0% yield stress of 270 MPa and a minimum ultimate tensile strength of 530 MPa. The nails or screws shall be produced from stainless steel. Cantilever brackets coated with hot dip galvanisation or with ZM310 (steel ref. 5 and 6) can also be used in service class 3 according to Eurocode 5

3.6 General aspects related to the use of the product

Simpson Strong-Tie cantilever brackets types GERB, GERC, GERW, GERG, SC, SCR and LEA are manufactured in accordance with the provisions of this

European Technical Assessment using the manufacturing processes as identified in the inspection of the plant by the notified inspection body and laid down in the technical documentation.

Cantilever brackets connections

Cantilever brackets shall be installed on the basis of a specific structural design for each installation, using the load-bearing capacities derived from the formulas given in Annex D, applying the appropriate k_{mod} factor depending on the relevant service class / duration of load and the appropriate National partial safety factor for materials.

The fixing of cantilever brackets to the support shall use the appropriate nails or screws in case of solid wood or wood-based support,. The load bearing capacities which can be derived from Annex C are given provided that the fixing device has been appropriately designed and installed.

Cantilever brackets shall be installed by appropriately qualified personnel, following an installation plan and relevant construction details worked out for each individual building project. The installation plan shall be based on the manufacturers general guide and provisions for installing SIMPSON Strong-Tie connections.

A cantilever brackets connection is deemed fit for its intended use provided:

Wood to wood connections

- **Cantilever brackets** can be fastened to wood-based members by nails or screws.
- There shall be nails or screws in all holes or a partial nailing pattern as prescribed in Annex B can be used.
- The characteristic capacity of the cantilever brackets connection is calculated according to the manufacturer's technical documentation.
- The cantilever brackets connection is designed in accordance with Eurocode 5 or an appropriate national code.
- The gap between the beams shall be maximum 3 mm.
- The cross section of the beams at the cantilever brackets connection shall have sharp edges at the lower side against the bottom plate and or sharp edges at the top side against the top plate, i.e. it shall be without wane.

- The width B of the beam shall correspond to that of the cantilever bracket. B shall not be smaller than $A-3$ mm, where A is the inner width of the cantilever bracket.
- Cantilever brackets made from stainless steel should only be fastened with fasteners made from suitable stainless steel. Zinc-coated joist hangers shall not be fastened with fasteners of stainless steel.
- Nails or screws to be used shall have a diameter, which fits the holes of the joist hangers. Round nails shall have a diameter which is not smaller than the diameter of the hole minus 1 mm.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 AVCP system

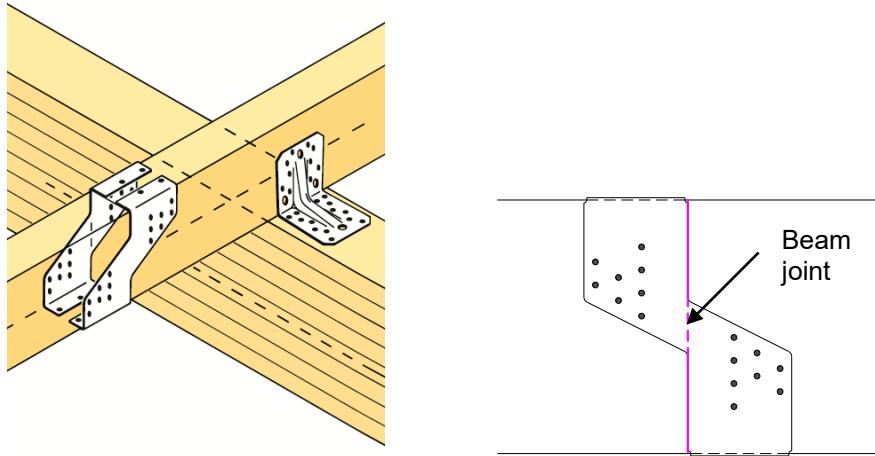
According to the decision 97/638/EC of the European Commission¹, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 2+.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2025-12-19 by

Thomas Bruun
Managing Director, ETA-Danmark


ANNEX A

REVISION HISTORY

<i>Modifications and additions to the previous versions of ETA-07/0053</i>	
Issue No.	Update
1.0	First release
2.0	change of the product names
	added size of GERW
	added type LEA
	modify the values for SC and SCR
3.0	Introduction of steel grade S250 + Z800
4.0	Adjustment from "approval" to "assessment"
	Added uplift capacities for LEA
	GERB150, GERC150: modified size E
	GERW: added option for peed-hole position, additional holes, "half" holes
	Adjustment of steel references, additional coating Z800 and ZM310
5.0	Update from ETAG 015 to EAD 130186-00-0603, Three Dimensional Nailing Plates

ANNEX B TYPICAL INSTALLATIONS

B1 Cantilver bracket

Conditions for using I-beam joists.

When an I-beam is used as a beam it is a condition for obtaining the stated load-carrying capacity, that 2 web stiffeners are nailed to the web of the beam, one on each side.

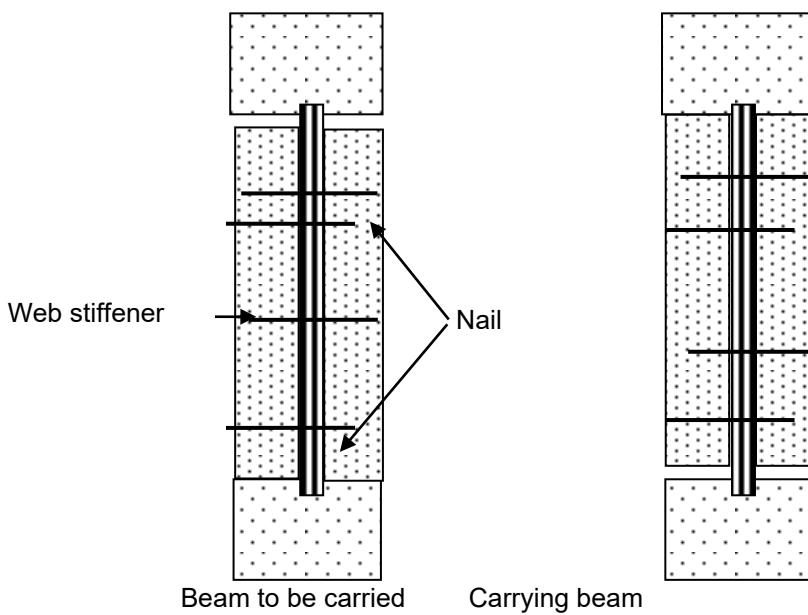


Figure C-1. Web stiffeners on the beam at the cantilever bracket. The web stiffener shall fit to the bottom flange and have a width of 2/3 of the height between the inner sides of the flanges.

The surface of the web stiffeners shall be flush with the side of the flange of the beam and shall fit tight to the lower flange and shall be nailed with sufficient nails to secure, that the web stiffeners and the web functions as one piece of solid timber. So, the number of nails in each web stiffener shall be:

$$n_{nail,web-stif} = n_{joist}$$

where n_{joist} is the total number of nails from the cantilever bracket into the beam.

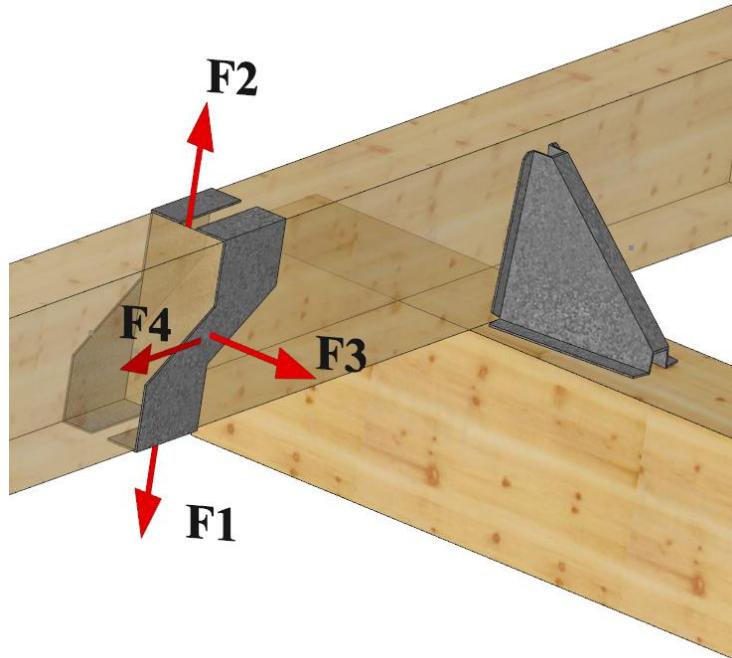
B2 Installation

Cantilever bracket connections

A cantilever brackets connection is deemed fit for its intended use under following conditions:

- Cantilever brackets can be fastened to wood-based members by nails or screws.
- There shall be nails or screws in all holes or a partial nailing pattern as shown and prescribed in Annex D.
- The gap between the end of the beams, where contact stresses can occur during loading shall be limited. This means that the gap between the ends of the beams connected shall be maximum 3 mm.
- The thickness of the beam shall be at least $l+4d$, where l is the length of the nails in the beam and d the diameter. This is in accordance with Eurocode 5.
- For all types of cantilever brackets except GERW:
The cross section of the beam to be carried shall have sharp edges at the lower side against the bottom plate, i.e. it shall be without wane.
- For Cantilever Bracket GERB:
The cross section of the carrying beam shall have sharp edges at the top side against the top plate, i.e. it shall be without wane.
- For Cantilever Bracket GERG, SC and SCR the width B_b of the beam shall correspond to that of the cantilever bracket. B_b shall not be smaller than $B-3$ mm, where B is the inner width of the cantilever bracket.
- The depth of the beam shall be so large that the top of the beam is at least 20 mm above the upper nail in the side of the beam.
- Cantilever brackets made from stainless steel shall only be fastened with fasteners made from suitable stainless steel. Zinc-coated cantilever brackets shall not be fastened with fasteners of stainless steel.
- Nails or screws to be used shall have a diameter, which fits the holes of the cantilever brackets. They shall have a diameter which is not smaller than the diameter of the hole minus 1 mm.
- The execution of the connection shall be in accordance with the approval holder's technical literature.

ANNEX C BASIS OF DESIGN


C0 Symbols used in the ETA-07/0053

For the purpose of ETA-07/0053, the following symbols apply.

$f_{c,90,k}$	characteristic compression strength perpendicular to grain of the timber
$f_{y,k}$	characteristic yields stress of the steel
k_{dens}	modification factor for density
$k_{i,j}$	is a factor considering the capacity of the nails and/or load directions
n_{flange}	is the number of nails in the top or bottom in one bracket
n_{nails}	is the number of nails in each end of the cantilever bracket (for type GERW)
n_{strip}	is the number of 20 mm wide horizontal strips with 2 or 3 nails in each end (for type GERW)
$R_{ax,k}$	Characteristic axial load-carrying capacity of the nails
$R_{lat,k}$	Characteristic lateral load-carrying capacity of the nails
t	thickness of the steel plate
w_{top}	is the width of the top of the connector ($w_{top} = 90$ mm).
ρ_k	Characteristic density of header or joist material (kg/m^3)

C1 Definition of Force Directions

It is assumed that the forces acting on the cantilever brackets connection are the following F_1 , F_2 , F_3 and F_4 , as shown in the figure below. The forces shall act in the middle of the beams.

C2 Characteristic Capacity Modification Methods

Capacities expressed as numbers (not formulas) are based on a characteristic density of 350 kg/m³. For timber or wood based material with a lower density than 350 kg/m³ the load carrying capacities shall be reduced by the K_{dens} factor:

$$K_{dens} = (\rho_k / 350)^2$$

C3 Fastener Specification and Capacities

Fastener types and sizes

NAILS diameter	Length Min – max	Nail type
4.0	35 - 100	Connector nails in accordance with ETA-04/0013
4.2	35 - 60	Connector nails in accordance with ETA-04/0013
4.0	35 - 100	connector nails in accordance with the standard EN 14592

SCREW diameter	Length Min – max	Screw type
5.0	35 - 50	Connector screws in accordance with ETA-04/0013
5.0	35 – 80	connector screws in accordance with EN 14592

Nail Capacity

See relevant ETA / EN 14592

C4.3 Load combination

For a combination of forces in the vertical direction and in the lateral direction the following inequalities shall be fulfilled.

$$\sum \left(\frac{F_{i,d}}{R_{i,d}} \right)^2 \leq 1$$

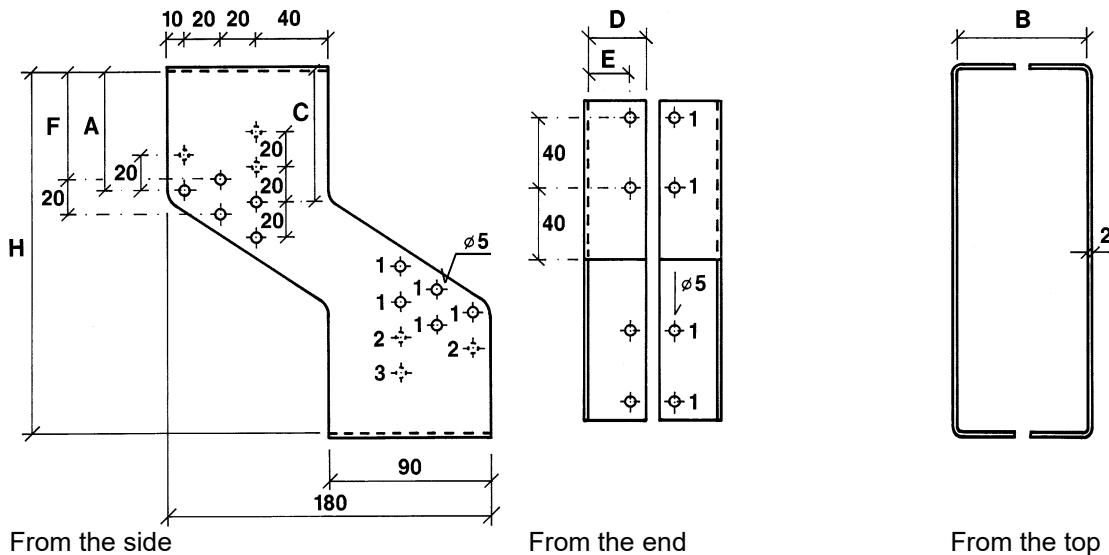
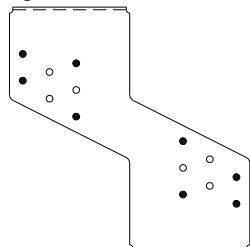
ANNEX D

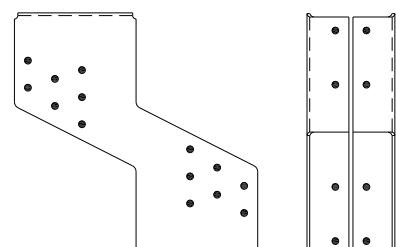
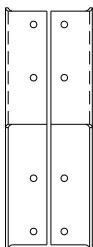
PRODUCT DEFINITION AND CAPACITIES

D1 GERB

Product Name	Material reference acc. to clause II-1	Alternative Names
GERB	Steel ref 1 to 7	-

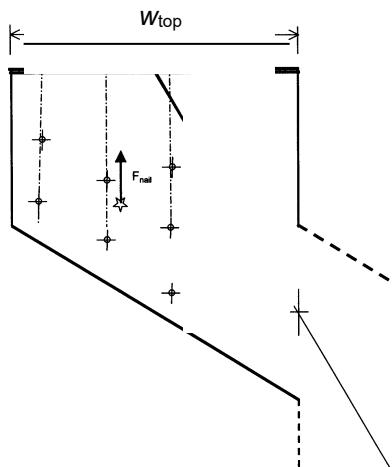
Drawing



Table D1-1. Dimensions

Type	size [mm]							Holes Ø5mm	Total number in a pair
	A	B _{min}	C	D	E	F	H		
GERB125	28	56	35	27	19	21,5	128,5	1	28
GERB140	35	62	42,5	30	21	28,5	140	1	28
GERB150	42	60	49,5	29	19	35,5	154	1+2	36
GERB160	45	62	52,5	30	22	38,5	160	1+2	36
GERB175	54,5	68	61	33	25	48	179	1+2	36
GERB180	55	68	62,5	33	25	48,5	180	1+2	36
GERB200	67,5	68	74	33	27	61	201	1+2+3	40
GERB220	75	70	81,5	34	26	68,5	220	1+2+3	40

Nail pattern
Figure D1-2.


Nails in corners

Full nailing in both sides, bottom and top

Characteristic capacities

Figure D1-3. Downward load F_1

The characteristic load-carrying capacity F_1 of a pair of cantilever brackets is calculated as:

$$R_{1,k} = 2,1 \left(w_{top} \sqrt{0,5t^2 f_{y,k} f_{c,90,k}} + k_{B,1} R_{lat,k} + 0,4 n_{flange} R_{lat,k} \right)$$

where

$f_{c,90,k}$ characteristic compression strength perpendicular to grain of the timber

$f_{y,k}$ characteristic yield stress of the steel

$k_{B,1}$ is a factor considering the capacity of the nails in the side of the bracket, see table D1-2

n_{flange} is the number of nails in the top or bottom in one bracket

$R_{lat,k}$ characteristic lateral load-carrying capacity of the nails

t thickness of the steel plate

w_{top} is the width of the top of the connector ($w_{top} = 90$ mm).

Uplift capacity F_2

The characteristic load-carrying capacity of a pair of cantilever brackets is calculated as:

$$R_{2,k} = k_{B,2} \cdot R_{lat,k}$$

where $k_{B,2}$ is stated in table D1-2

Lateral load F_3

The characteristic load-carrying capacity of a pair of cantilever brackets is calculated as the minimum value of the following two formulas:

$$R_{3,ax} = k_{B,3,ax} \cdot R_{ax,k}$$

$$R_{3,lat} = k_{B,3,lat} \cdot R_{lat,k}$$

Where the factors $k_{B,3,ax}$ and $k_{B,3,lat}$ are stated in table D1-2.

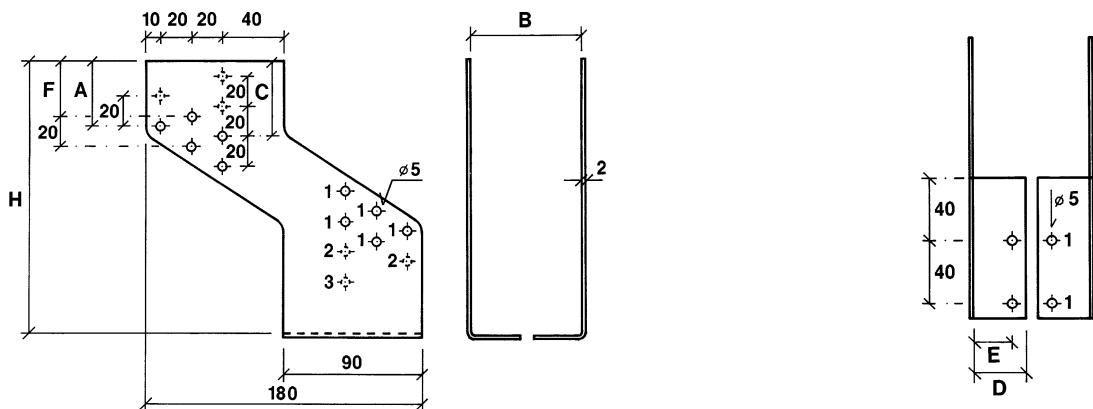
Table D1-2. Factors $k_{B,1}$, $k_{B,2}$ and $k_{B,3}$ for a pair of Cantilever Bracket GERB

Type	F_1 $k_{B,1}$		F_2 $k_{B,2}$		F_3 Full side nails	
	Full side nails	Nails in corners	Full side nails	Nails in corners	$k_{B,3,ax}$	$k_{B,3,lat}$
GERB125	2,03	2,01	2,5	2,24	4	2,1
GERB140	2,08	2,06	2,5	2,24	4	2,1
GERB150	3,2	1,85	4,01	2,35	6	3,5
GERB160	3,23	1,87	4,01	2,35	6	3,5
GERB175	3,44	1,97	4,01	2,35	6	3,5
GERB180	3,44	1,97	4,01	2,35	6	3,5
GERB200	3,8	1,86	5,04	2,55	6	4,2
GERB220	3,84	1,88	5,04	2,55	6	4,2

Combined forces

For practical purposes the strength verification is always carried out for design forces and design capacities.

For combinations of forces the following inequalities shall be fulfilled:


$$\left(\frac{F_{1,d}}{R_{1,d}} \right)^2 + \left(\frac{F_{3,d}}{R_{3,d}} \right)^2 \leq 1,0$$

$$\left(\frac{F_{2,d}}{R_{2,d}} \right)^2 + \left(\frac{F_{3,d}}{R_{3,d}} \right)^2 \leq 1,0$$

D2 GERC

Product Name	Material reference acc. to clause II-1	Alternative Names
GERC	Steel ref 1 to 7	-

Drawing

From the side

From the end

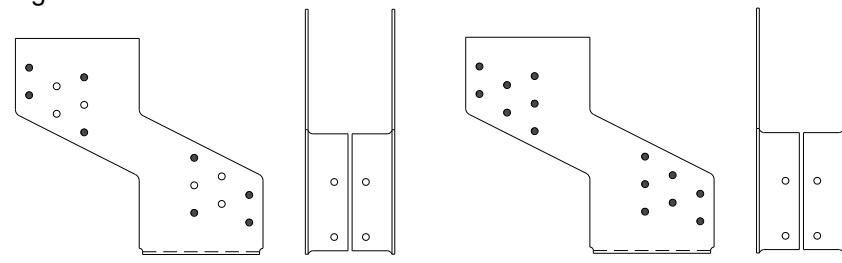

From the top

Table D2-1. Size specification

Type	size [mm]							Holes Ø5mm	Total number in a pair
	A	B _{min}	C	D	E	F	H		
GERC125	16,5	58	23	27	19	10	117	1	24
GERC150	30,5	60	38,5	29	19	24,5	143	1	32
GERC175	30,5	68	38,5	33	25	24,5	155	1+2	32
GERC200	42,5	68	50	33	25	37	181	1+2+3	36
GERC225		68		33	25		212	1+2	36

Nail pattern

Figure D2-2.

Nails in corners

Full side nails

Characteristic capacities

Downward load F_1

The characteristic load-carrying capacity of a pair of cantilever brackets is calculated as:

$$R_{1,k} = k_{C,1} \cdot R_{lat,k}$$

where $k_{C,1}$ is a factor considering the capacity of the nails in the side of the bracket.

Uplift F_2

The characteristic load-carrying capacity of a pair of cantilever brackets is calculated as:

$$R_{2,k} = k_{C,2} \cdot R_{lat,k}$$

where $k_{C,2}$ is a factor considering the capacity of the nails in the side of the bracket.

Lateral load F_3

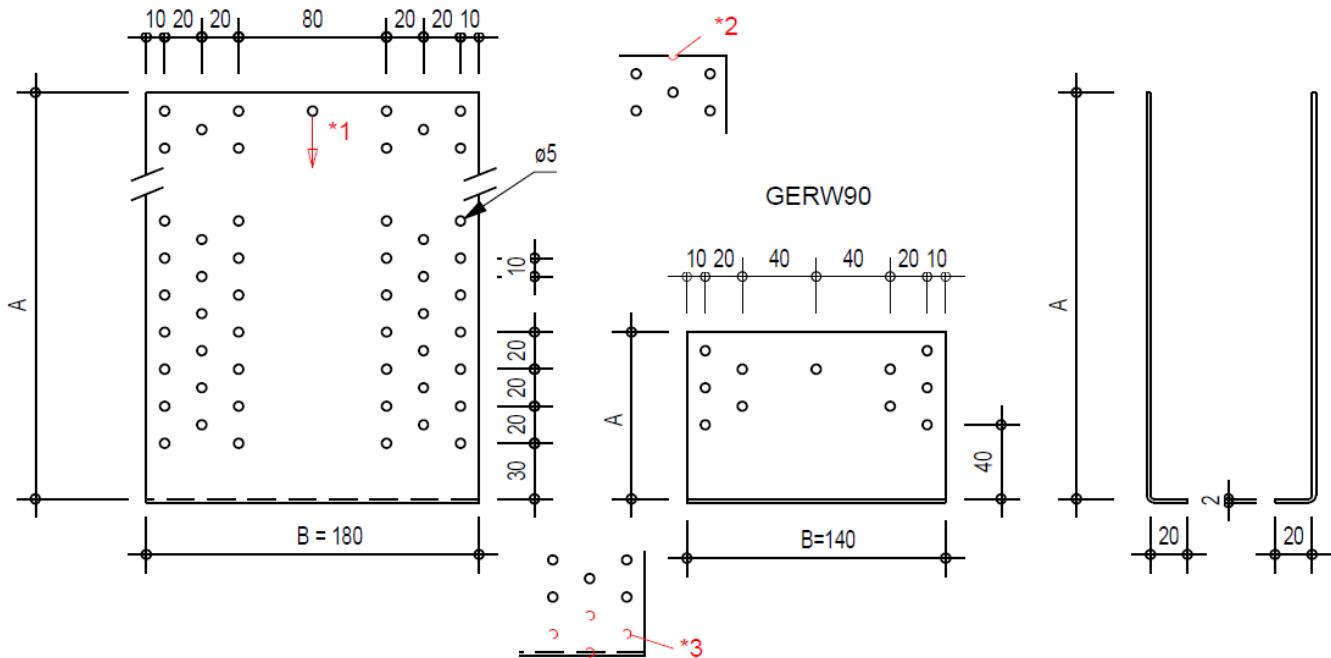
The characteristic load-carrying capacity of a pair of cantilever brackets is calculated as the minimum value of the following two formulas:

$$R_{3,ax} = k_{C,3,ax} \cdot R_{ax,k}$$

$$R_{3,lat} = k_{C,3,lat} \cdot R_{lat,k}$$

where the factors $k_{C,3,ax}$ and $k_{C,3,lat}$ are stated in table D2-2

Table D2-2. Factors $k_{C,1}$, $k_{C,2}$ and $k_{C,3}$ for a pair of Cantilever Bracket GERC


Type	Downward load, $k_{C,1}$		Uplift $k_{C,2}$		Lateral force Full side nails	
	Full side nails	Nails in corners	Full side nails	Nails in corners	$k_{C,3,ax}$	$k_{C,3,lat}$
GERC125	7,1	5,7	2,5	2	4	2,1
GERC150	9,9	5,7	4	2,4	6	3,5
GERC175	9,6	5,5	4	2,4	6	3,5
GERC200	10,5	5,3	5,1	2,5	6	4,2
GERC225	9,2	5,3	4	2,4	6	3,5

D3 GERW

Product Name	Material reference acc. to clause II-1	Alternative Names
GERW	Steel ref 1 to 7	-

Drawing

Figure D3-1. Dimensioned drawing of Cantilever Bracket GERW

*1 the peep hole can be placed also in vertical direction on another place

*2 holes on the border can be also be "cut" as half holes,

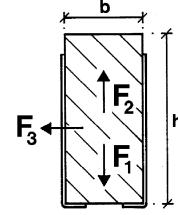
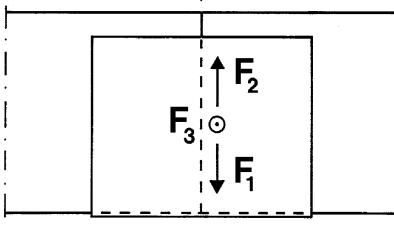
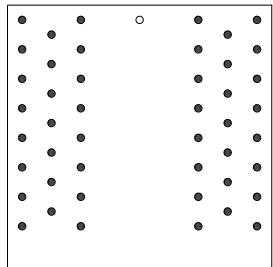
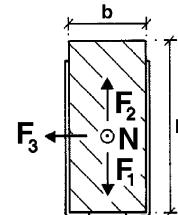
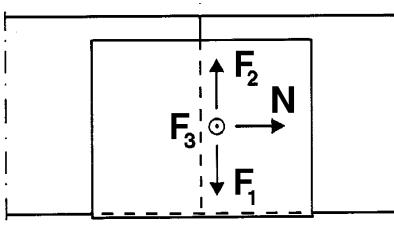
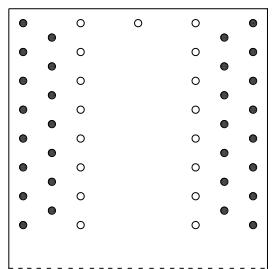



*3 additional holes may be possible, also in the bended 20mm flange. These holes are not for nailing.

Table D3-1: Size specification




Type	A [mm]	B [mm]	no of nails / screws	
			Full nailing	Partial nailing
GERW90	90	140	20	12
GERW120	120		56	36
GERW140	140		68	44
GERW160	160		80	52
GERW180	180		92	60
GERW200	200		104	68
GERW220	220		116	76
GERW240	240		128	84
GERW260	260		140	92
GERW280	280		152	100
GERW300	300		164	108
GERW320	320		176	116
GERW340	340		188	124
GERW360	360		200	132

GERW380	380	212	140
GERW400	400	224	148
GERW420	420	236	156

Nail pattern

Nails in all holes applicable for shear forces F_1 , F_2 , F_3 only.

Nails in 2 end columns applicable for shear forces F combined with normal force N

Characteristic capacities

Downward load F_1 and uplift F_2

The characteristic load-carrying capacity of a pair of cantilever brackets can be determined from:

$$R_1 = R_2 = k_{w,1-2} \cdot R_{lat,k}$$

where $k_{w,1-2}$ is stated in table D3-3.

In the case where the Cantilever Bracket GERW are subjected to an axial force N shall the nails have a minimum distance to end grain of at least $15d$, where d is the diameter of the nails, here 4,0 mm. Consequently, in this case only the 2 nail hole columns nearest each end of the bracket can be used, however, not type 90.

Lateral load F_3

For every 20 mm wide horizontal strip with 3 nails in each end 1 nail is subjected to axial withdrawal and 2 nails to lateral load. For the type W 90 and for connections subjected to an axial tensile force there is only 2 nails per strip so 1 nail is subjected to axial withdrawal and 1 nail to lateral load. So the characteristic load-carrying capacity of a pair of cantilever brackets is calculated as the minimum value of the following two formulas.

For lateral load should all nail holes in the cantilever brackets be used. The factors in the following formulas are determined under this assumption.

$$R_{3,ax} = n_{strip} \cdot k_{W,3,ax} \cdot R_{ax,k}$$

$$R_{3,lat} = n_{strip} \cdot k_{W,3,lat} \cdot R_{lat,k}$$

Where n_{strip} is the number of 20 mm wide horizontal strips with 2 or 3 nails in each end (only 2 nails for Cantilever Bracket GERW 90). The factors $k_{W,3,ax}$ and $k_{W,3,lat}$ are for nails in either 2 columns in each end or in all holes as stated in table 3.4.

Axial force F_4

The characteristic axial tensile capacity of a pair of cantilever brackets can be determined from the following formula:

$$R_{4,k} = 2 \times n_{nails} \times R_{lat,k}$$

where n_{nails} is the number of nails in each end of the cantilever bracket. The nails shall be positioned at least $15d$ from the end grain of the timber member.

Table D3-2. Factors $k_{w,1-2}$ and $k_{w,3}$ for a pair of Cantilever Bracket GERW

Type	Downward or uplift load, $k_{w,1-2}$				Lateral force			
	Nails in 2 end columns		Nails in all holes		Nails in 2 end columns		Nails in all holes	
	No. 2x	$k_{w,1-2}$	No. 2x	$k_{w,1-2}$	$k_{w,3,ax}$	$k_{w,3,lat}$	$k_{w,3,ax}$	$k_{w,3,lat}$
GERW90	4	2,0			2	0,5	2	0,7
GERW90	5	2,7	5	2,7	2	0,5	2	1,4
GERW120	9	5,6	14	11,4	2	0,5	2	1,4
GERW140	11	8,2	17	15,6	2	0,5	2	1,4
GERW160	13	11,0	20	20,3	2	0,5	2	1,4
GERW180	15	14,2	23	25,4	2	0,5	2	1,4
GERW200	17	17,6	26	30,9	2	0,5	2	1,4
GERW220	19	21,3	29	36,7	2	0,5	2	1,4
GERW240	21	25,1	32	42,7	2	0,5	2	1,4
GERW260	23	29,1	35	48,8	2	0,5	2	1,4
GERW280	25	33,3	38	55,1	2	0,5	2	1,4
GERW300	27	37,2	41	61,2	2	0,5	2	1,4
GERW320	29	41,4	44	67,5	2	0,5	2	1,4
GERW340	31	45,6	47	73,7	2	0,5	2	1,4
GERW360	33	49,8	50	80,0	2	0,5	2	1,4
GERW380	35	52,3	53	84,5	2	0,5	2	1,4
GERW400	37	56,1	56	90,3	2	0,5	2	1,4
GERW420	39	59,8	59	96,1	2	0,5	2	1,4

D4 GERG

Product Name	Material reference acc. to clause II-1	Alternative Names
GERG	Steel ref 1 to 7	-

Drawing

Figure D4-1. Dimensioned drawing of Cantilever Bracket GERG

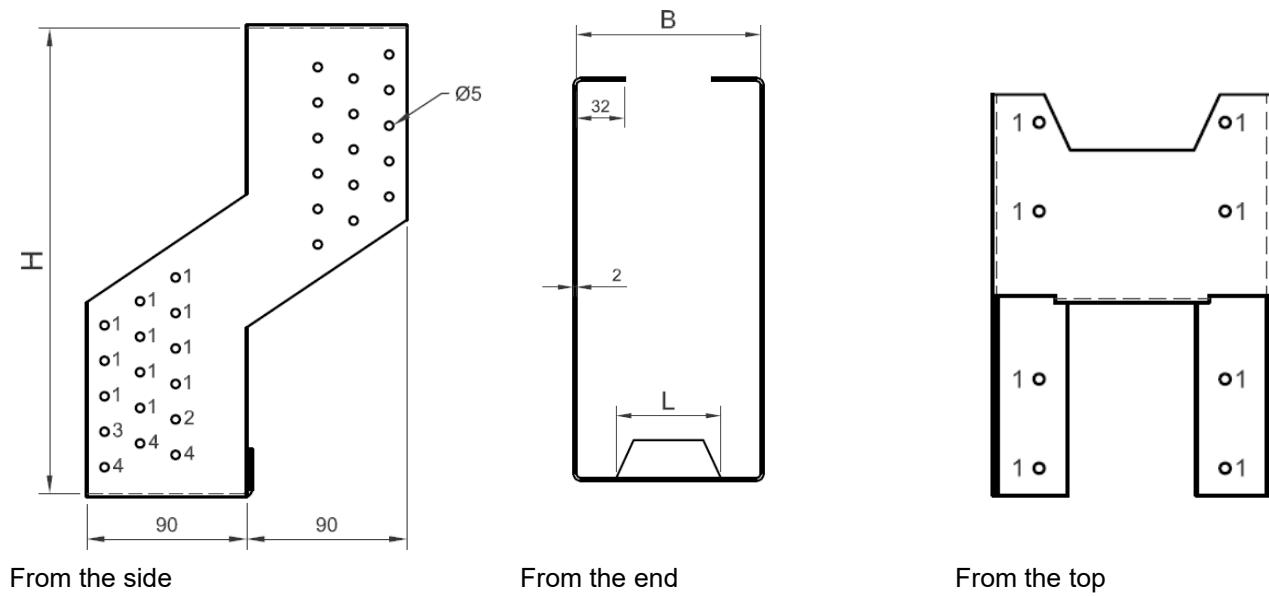


Table D4-1. Size Specification

Type	size [mm]			Holes Ø5mm	Total number in a pair
	B	H	L		
GERG120x180	122	182	69	1	52
GERG120x200	122	202	69	1+2	56
GERG120x220	122	222	69	1+2+3	60
GERG120x240	122	242	69	1+2+3	60
GERG120x260	122	262	69	1+2+3+4	72
GERG140x200	142	202	89	1+2	56
GERG140x220	142	222	89	1+2+3	60
GERG140x240	142	242	89	1+2+3	60
GERG140x260	142	262	89	1+2+3+4	72
GERG160x220	162	222	109	1+2+3	60
GERG160x240	162	242	109	1+2+3	60
GERG160x260	162	262	109	1+2+3+4	72

Interim sizes for H are possible, by using the hole pattern and capacities of the next lower full size.

Characteristic capacity

Table D4-2. Characteristic load-carrying capacity of Cantilever Bracket GERG for downward force F_1 and uplift force F_2 . The bracket shall have nails 4,0x50 mm in all holes

Type	120x180	120x200 140x200	120x220 140x220 160x220	120x240 140x240 160x240	120x260 140x260 160x260
Down: $R_{1,k}$	22,3	25,1	31,4	34,5	41,5
Up: $R_{2,k}$	9,1	10,3	13,8	15,3	19,3

Lateral load F_3

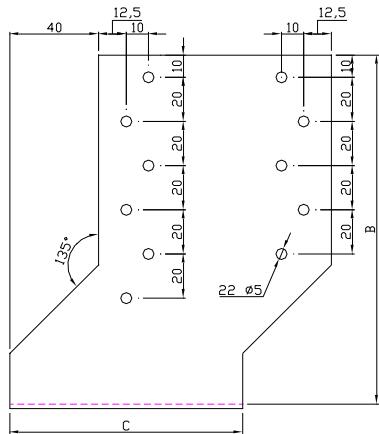
The characteristic load-carrying capacity of a cantilever bracket is calculated as the minimum value of the following two formulas:

$$R_{3,ax} = k_{G,3,ax} \cdot R_{ax,k}$$

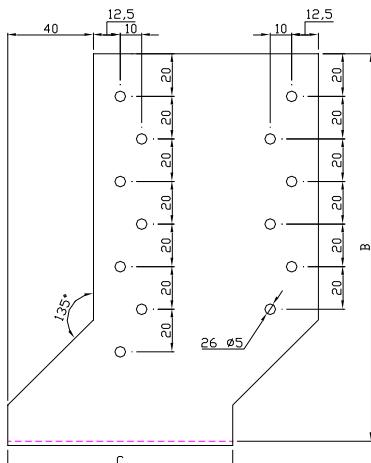
$$R_{3,lat} = k_{G,3,lat} \cdot R_{lat,k}$$

where the factors $k_{G,3,ax}$ and $k_{G,3,lat}$ are stated in table 3.5.2.

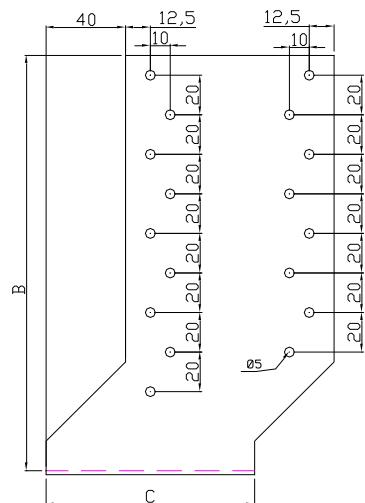
Table D4-3. Factors $k_{G,3,ax}$ and $k_{G,3,lat}$ for calculating the characteristic lateral capacity

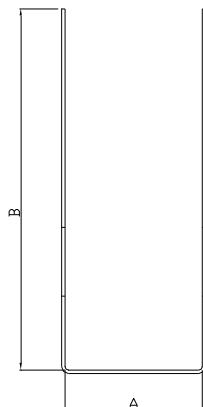

Type	120x180	120x200 140x200	120x220 140x220 160x220	120x240 140x240 160x240	140x260 160x260
$k_{G,3,ax}$	6,0	6,0	6,0	6,0	6,0
$k_{G,3,lat}$	4,2	4,9	5,6	5,6	6,3

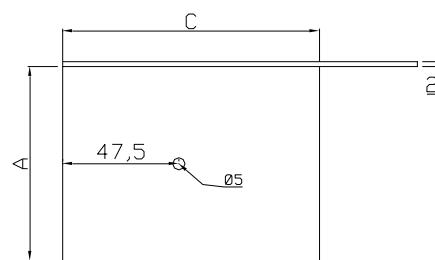
D5 SC


Product Name	Material reference acc. to clause II-1	Alternative Names
SC	Steel ref 1 to 7	-

Drawing

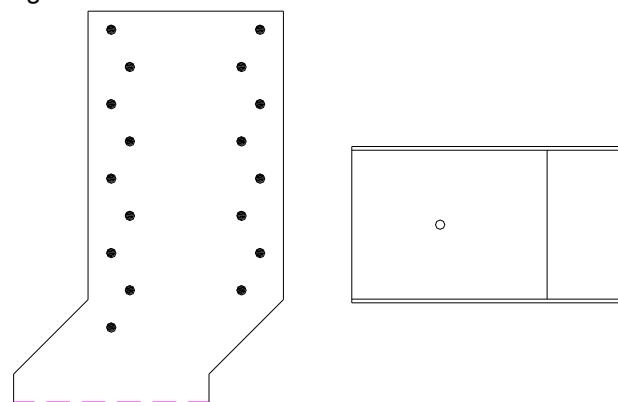

Figure D5-1. Dimensioned drawing of Cantilever Bracket SC


From the side, 380/64/2


From the side, 440/76/2

From the side, 500/80/2

From the end



From the top

Table D5-1. Size Specification

Type	size [mm]			Holes Ø5mm
	B	H	L	
SC 380/64/2	64	158	105	10+12+1
SC 440/76/2	76	182	105	12+14+1
SC 500/80/2	80	210	105	16+18+1

Nail pattern
Figure D5-2.

Full side nails

Characteristic capacity

Table D5-2. Characteristic load-carrying capacity of Cantilever Bracket SC for downward force F_1 with CNA4,0x50 nails

Type	SC 380	SC 440	SC 500
Down: $R_{1,k}$	15,6	18,7	24,2

D6 SCR

Product Name	Material reference acc. to clause II-1	Alternative Names
SCR	Steel ref 1 to 7	-

Drawing

Figure D6-1. Dimensioned drawing of Cantilever Bracket SCR

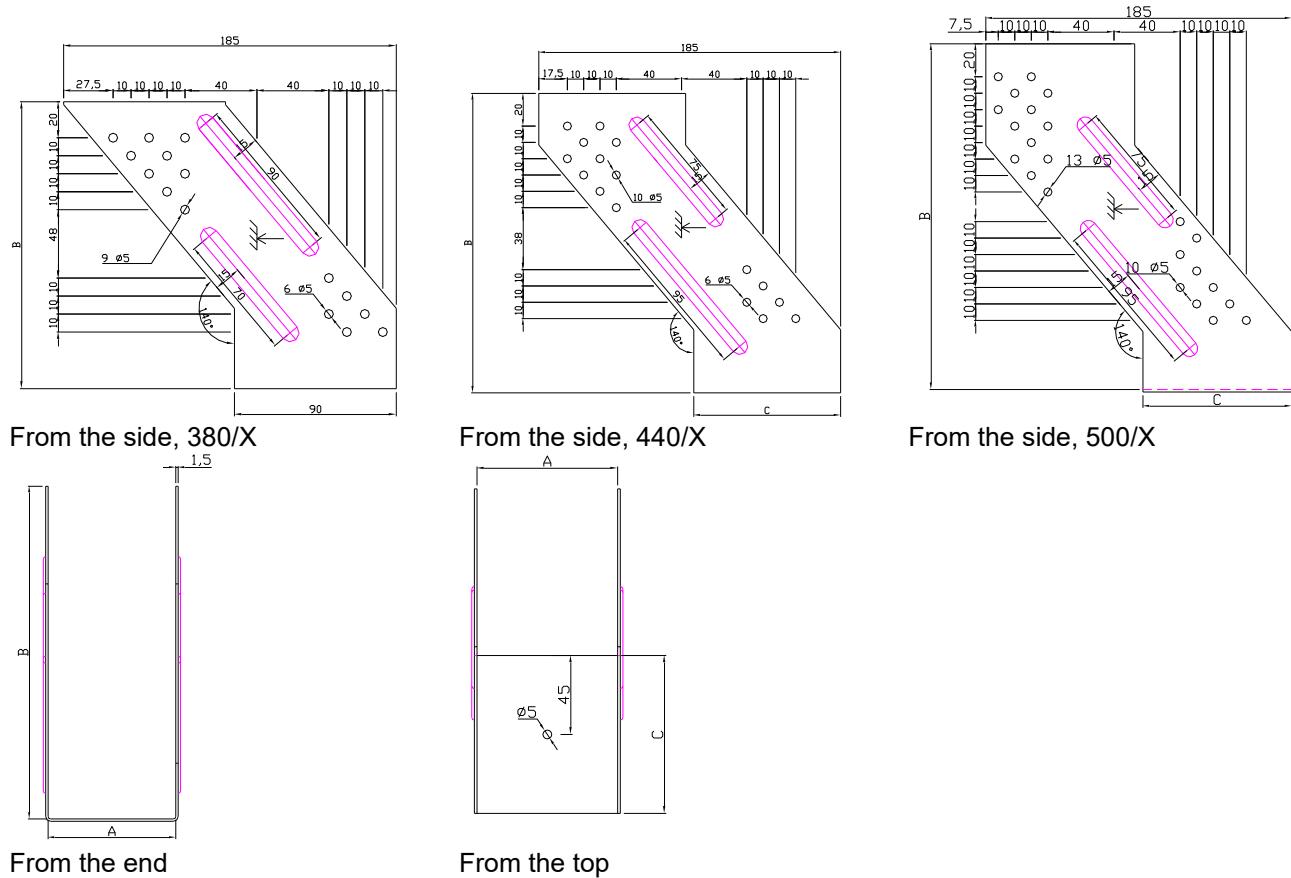
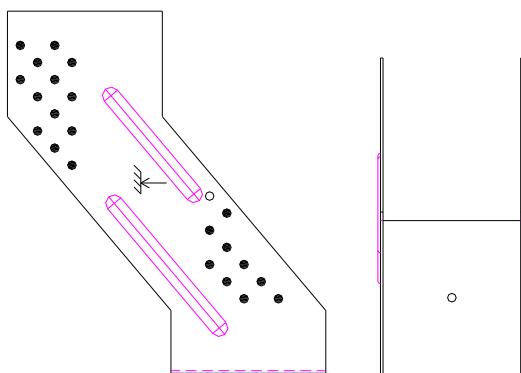



Table D6-1: Size Specification

Type	size [mm]				Holes Ø5mm
	B	H	L	t	
SCR 64/158	64	158	90	1,5	15+15+1
SCR 76/182	76	182	90	1,5	17+16+1
SCR 80/210	80	210	90	1,5	23+23+1
SCR 380/X	50-80	150-165	90	1,5	15+15+1
SCR 440/X	50-100	170-190	90	1,5	17+16+1
SCR 500/X	50-100	200-225	90	1,5	23+23+1

Nail pattern

Figure D6-2. Nail pattern

Full side nails

Characteristic capacity

Downward load F_1

The characteristic load-carrying capacity $R_{1,k}$ of a cantilever bracket nailed in all side holes with 4,0x35 mm or 4,0x50 mm nails in accordance to ETA 04/0013 subjected to a downward force is stated in table D6-3.

Uplift F_2

The characteristic load-carrying capacity $R_{2,k}$ of a cantilever bracket nailed in all holes with 4,0x35 mm or 4,0x50 mm nails in accordance with ETA 04/0013 subjected to an uplift force is stated in table D6-3.

Table D6-2. Characteristic load-carrying capacity of Cantilever Bracket SCR for downward force F_1 and uplift force F_2 . The bracket shall have nails in all side holes

Nail type and force direction	SCR64/158 = SCR380	SCR76/182 = SCR440	SCR80/210 = SCR500
4,0x35 mm			
Down: $R_{1,k}$	14,6	16,7	22,7
Up: $R_{2,k}$	4,6	5	8,1
4,0x50 mm			
Down: $R_{1,k}$	19,2	22,3	30,6
Up: $R_{2,k}$	6,3	6,8	11,2

Lateral load F_3

The characteristic load-carrying capacity of a cantilever bracket is calculated as the minimum value of the following two formulas:

$$R_{3,ax} = k_{SCR,3,ax} \cdot R_{ax,k}$$

$$R_{3,lat} = k_{SCR,3,lat} \cdot R_{lat,k}$$

where the factors $k_{SCR,3,ax}$ and $k_{SCR,3,lat}$ are stated in table 3.7.2.

Table D6-3. Factors $k_{SCR,3,ax}$ and $k_{SCR,3,lat}$ for calculating the characteristic lateral capacity

Type	SCR 380	SCR 440	SCR 500
$k_{SCR,3,ax}$	5,0	5,0	6,0
$k_{SCR,3,lat}$	2,8	2,8	5,3

D7 LEA

Product Name	Material reference acc. to clause II-1	Alternative Names
LEA	Steel ref 1 to 7	-

Drawing

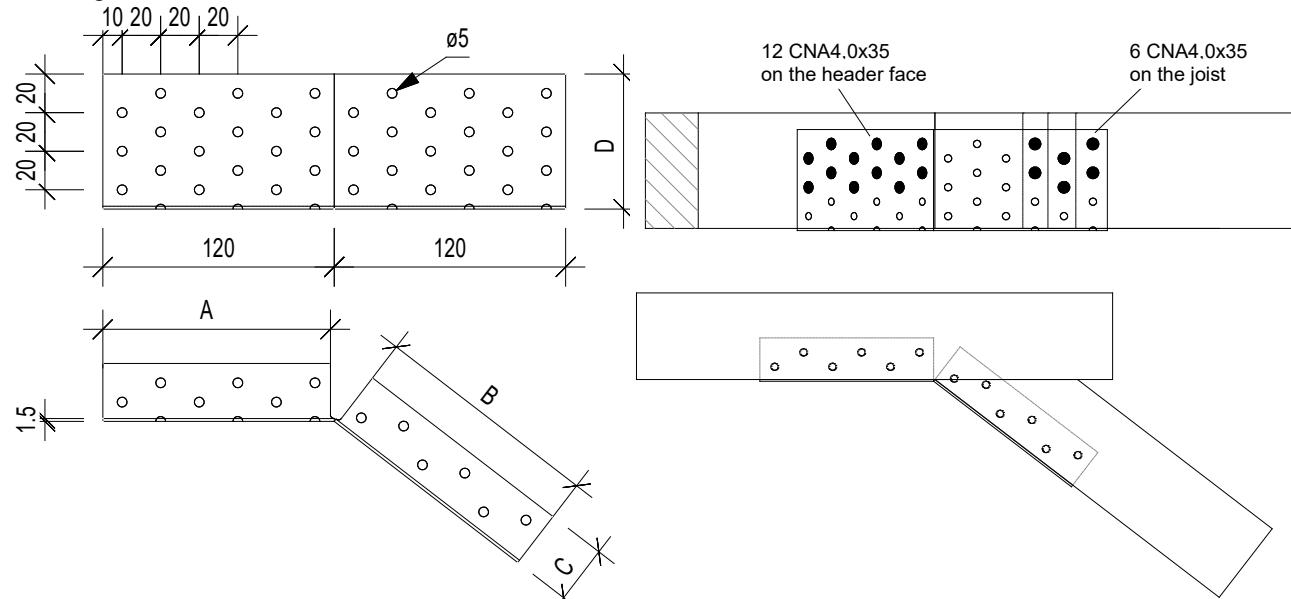


Table D7-1. Size Specification

Type	size [mm]				Holes Ø5mm
	A	B	C	D	
LEA240/30/70/1,5	118	118	30	70	18+18+6+6

Material

Table D7-2. Material Specification

Material thickness	Material Grades	Coating specification
1,5	S250 GD	Z275 or Z800
1,5	stainless steel as described	

Characteristic capacity

Table D7-3. Load carrying capacities for CNA 4,0x35

Hangers	Number of fasteners		Characteristic capacities (kN)	
	Header	Joist	F_1	F_2
LEA240/30/70/1.5	12	6	2.7	2,3